Probabilistic Approach to Fractional Integrals and the Hardy-littlewood-sobolev Inequality

نویسنده

  • DAVID APPLEBAUM
چکیده

We give a short summary of Varopoulos’ generalised Hardy-LittlewoodSobolev inequality for self-adjoint C0 semigroups and give a new probabilistic representation of the classical fractional integral operators on Rn as projections of martingale transforms. Using this formula we derive a new proof of the classical Hardy-LittlewoodSobolev inequality based on Burkholder-Gundy and Doob’s inequalities for martingales. CONTENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion

In the euclidean space, Sobolev and Hardy-Littlewood-Sobolev inequalities can be related by duality. In this paper, we investigate how to relate these inequalities using the flow of a fast diffusion equation in dimension d ≥ 3. The main consequence is an improvement of Sobolev’s inequality when d ≥ 5, which involves the various terms of the dual Hardy-Littlewood-Sobolev inequality. In dimension...

متن کامل

Hardy-Littlewood-Sobolev inequalities via fast diffusion flows.

We give a simple proof of the λ = d - 2 cases of the sharp Hardy-Littlewood-Sobolev inequality for d≥3, and the sharp Logarithmic Hardy-Littlewood-Sobolev inequality for d = 2 via a monotone flow governed by the fast diffusion equation.

متن کامل

Sharp Hardy-littlewood-sobolev Inequality on the Upper Half Space

There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...

متن کامل

A New, Rearrangement-free Proof of the Sharp Hardy-littlewood-sobolev Inequality

We show that the sharp constant in the Hardy-Littlewood-Sobolev inequality can be derived using the method that we employed earlier for a similar inequality on the Heisenberg group. The merit of this proof is that it does not rely on rearrangement inequalities; it is the first one to do so for the whole parameter range.

متن کامل

0 M ay 2 00 9 PITT ’ S INEQUALITY AND THE FRACTIONAL LAPLACIAN : SHARP ERROR ESTIMATES for

Considerable interest exists in understanding the framework of weighted inequalities for differential operators and the Fourier transform, and the application of quantitative information drawn from these inequalities to varied problems in analysis and mathematical physics, including nonlinear partial differential equations, spectral theory, fluid mechanics, stability of matter, stellar dynamics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013